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CHERN-CONNES-KAROUBI CHARACTER ISOMORPHISMS

AND ALGEBRAS OF SYMBOLS OF PSEUDODIDIFFERENTIAL

OPERATORS

ALEXANDRE BALDARE, MOULAY BENAMEUR, AND VICTOR NISTOR

Abstract. We introduce a class of algebras for which the Chern-Connes-

Karoubi character is an isomorphism after tensoring with C. We provide sev-
eral examples of such algebras, such as invariant sections of Azumaya bundles,

crossed products with finite groups and certain algebras of pseudodifferential

operators.
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1. Introduction and statement of main results

1.1. Motivation: invariant operators and their index. Let G be a compact
Lie group acting on a smooth manifold M without boundary. Let E → M be an
equivariant bundle and P be a G-invariant pseudodifferential operator acting on the

1



2 A. BALDARE, M. BENAMEUR, AND V. NISTOR

sections of E. One of the main motivations for this paper is to study the equivariant
index of P using methods of non-commutative geometry [9, 10, 11, 14]. More
precisely, we are interested in the index ind(πα(P )) of the restriction πα(P ) of the

G-invariant operator P to a generic isotypical component α ∈ Ĝ [5, 6, 7], because
the index provides the main obstruction to the invertibility of these operators.
Moreover, the equivariant index indG(P ) ∈ R(G) satisfies

(1) indG(P ) =
∑
α∈Ĝ

ind(πα(P ))

dim(α)
[α] ∈ R(G) .

Let C∞(S∗M ; End(E))G be the algebra of G-invariant symbols. We may as-
sume, without loss of generality, that P has order zero. Let us consider the
Ktop

1 -class [σ0(P )] ∈ Ktop
1 (C∞(S∗M ; End(E))G) of the principal symbol σ0(P ) ∈

C∞(S∗M ; End(E))G of P . It is known [10, 14, 15, 17, 33] that the index can be ex-
pressed as the pairing φ∗([σ0(P )]) between a cyclic cocycle φ on C∞(S∗M ; End(E))G

and the class of σ0(P ) in Ktop
1 (C∞(S∗M ; End(E))G). (We write Ktop for the topo-

logical K-theory functors to distinguish them from their algebraic counterparts, see
Remark 2.6.) We are thus lead to study the periodic cyclic homology of the symbol
algebra C∞(S∗M ; End(E))G. This turns out to be a textbook application of non-
commutative geometry using what we dub “Connes algebras,” a class of algebras
that we introduce and study in this paper.

For a complex algebra A, let

(2) Ch : Kalg
j (A)→ HPtop

j (A) , j = 0, 1 ,

be the Chern-Connes-Karoubi character, where HPtop
j (A) is a periodic cyclic ho-

mology of A defined using a suitable completion for the cyclic complex [10, 11, 23,

13, 12]. Here Kalg
j is the algebraic K-theory functor, which is needed since A is not

necessarily topological (see Remark 2.6 for its definition and relation to topological
K-theory). In order to study the equivariant index of P , we are further led to study
whether the map (2) induces isomorphisms

Ch : Ktop
j (C∞(S∗M ; End(E))G)⊗ C→ HPtop

j (C∞(S∗M ; End(E))G)

(j = 0, 1). Let C(S∗M ; End(E))G be the algebra of continuous, G-invariant sections
of End(E), which is, of course, the C∗-completion of C∞(S∗M ; End(E))G. We are
also led to study whether the inclusion C∞(S∗M ; End(E))G ⊂ C(S∗M ; End(E))G

yields isomorphisms in topological K-theory. We prove that the answer to both
these questions is affirmative. The techniques for proving these isomorphisms turn
out to apply to a more general setting than that of the algebra C∞(S∗M ; End(E))G.
We thus introduce and study the class of “Connes algebras,” which is, roughly, the
class of algebras for which both maps (induced by the character and by inclusion)
are isomorphisms. See also [26, 36] for earlier papers that used some similar tech-
niques.

1.2. Connes algebras and statement of main results. Let us consider a cat-
egory of cyclic complexes (this is, roughly, a category of topological algebras for
which a definite choice of completion of the cyclic complex has been made, Defi-
nition 2.2). We assume that we are given for each i ∈ {0, 1} a suitable Ki-theory
functor that is close to topological Ki-theory and is such that the Chern-Connes-
Karoubi character (Equation 2) extends to this category. A Connes algebra A for
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the given Ki-functors is a locally convex topological algebra A together with a con-
tinuous Banach algebra norm ‖ · ‖0 on A and a given completion of the algebraic
cyclic complex of A with the following properties:

(i) Let A be the completion of A with respect to the norm ‖ · ‖0. Then the
inclusion A → A induces an isomorphism in K-theory:

(3) Ki(A)
∼−→ Ki(A) , i = 0, 1 .

(ii) The Chern-Connes-Karoubi character induces an isomorphism “after tensor-
ing with C,” that is:

(4) Ch : Ki(A)⊗ C ∼−→ HPtop
i (A) , i = 0, 1 ,

where the topological periodic cyclic homology is defined with respect to a
suitable completion of the algebraic cyclic complex of A.

See Definition 3.5 for more details.
For the applications in this paper, we shall choose Ki = RKi, where RKi were

introduced by Phillips [34] (but see also [16, 17] for further insight and important
generalizations). The definition of the groups RKi is recalled below. In this paper,
it will be convenient to consider i ∈ Z/2Z ' {0, 1}.

Let X be a manifold with corners (but otherwise C∞) and F → X be a smooth
fiber bundle of finite-dimensional, semi-simple algebras. That is, the fibers of F
are isomorphic to finite direct sums of matrices. We let C∞(X;F) denote the set
of smooth sections of F . If F has simple fibers (i.e. matrix algebras) then this is
the prototype of an Azumaya algebra with center C∞(X). We shall need also the
following two ideals of C∞(X;F) associated to any closed subset Y ⊂ X. First,
C∞0 (X,Y ;F) consists of those sections that vanish on Y and, second, C∞∞(X,Y )
consists of those sections that vanish to infinite order on Y . If F = C (the trivial
vector bundle X × C→ X), then we drop it from the notation.

Theorem 1.1. Let X be a compact manifold with corners, F → X be a smooth
fiber bundle of finite-dimensional, semi-simple algebras, and Y ⊂ ∂X be a union
of closed faces of X. We assume that a compact Lie group G acts smoothly on
X and F such that GY = Y . Then the algebras C∞(X;F)G, C∞0 (X,Y ;F)G, and
C∞∞(X,Y ;F)G are Connes algebras.

Essentially the same method of proof leads to the same result when Y is a more
general closed subset of X, but that is not needed for our main result and including
a proof would greatly extend the length of the paper.

Let K be the algebra of compact operators. Thus, in particular, the algebra
C∞(S∗M ; End(E))G ' Ψ0(M ;E)G/

(
Ψ0(M ;E)G ∩ K

)
is a Connes algebra. To

be able to work with the concept of a Connes algebra, we need to make some
assumptions that are satisfied in the case of main interest in this paper, that is,
that of the algebra C∞(S∗M ; End(E))G. First, we assume that the chosen K-theory
functor (the one with respect to which we define the concept of a Connes algebra)
is homotopy invariant and satisfies a six term exact sequence for admissible short
exact sequences of algebras. (The class of admissible exact sequences needs to be
specified each time, in our applications, all exact sequences will be admissible as
long the ideal and the quotient have the induced topologies. See Sections 2 and 3 for
more details.) We also assume that this category satisfies excision in periodic cyclic
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homology (again for admissible short exact sequences) and that the Chern-Connes-
Karoubi character is a natural transformation between the exact sequence in K-
theory and periodic cyclic homology (associated to, again, an admissible short exact
sequence of algebras). We then have the following result that will play an important
role in our study of the algebras C∞(S∗M ; End(E))G. (In our applications, all exact
sequences will be admissible if the topologies are compatible.)

Theorem 1.2. Let C be a category of topological cyclic complexes that satisfies
excision in periodic cyclic homology and in K-theory. Let 0→ I → A → A/I → 0
be an admissible short exact sequence in C of algebras with a fixed Banach algebra
norm such that the corresponding Banach space completion of this sequence is exact
as well. Assume that two of the algebras I, A, and A/I are Connes algebras. Then
the third one is a Connes algebra as well.

Possible choices of the category C and of the K-groups are:

• the category of m-algebras and K-groups of Cuntz with the admissible
sequences being the linear-split exact sequences [16, 17];
• the subcategory of Fréchet m-algebras, in which all exact sequences are

admissible [30]. This is the case that is relevant for the applications in this
paper, and hence this is the case that we shall consider in detail. Moreover,
in this case, the K-theory groups of Cuntz coincide with the representable
K-theory groups introduced earlier by Phillips [34].

Our result for the algebra C∞(S∗M ; End(E))G is obtained by iterating Theorem
1.2 for something that we call a C-stratification of ideals (Definition 3.8). More
precisely, we have the following result.

Theorem 1.3. The algebra C∞(S∗M ; End(E))G is a Fréchet m-algebra with a
composition series

0 = IN ⊂ IN−1 ⊂ . . . ⊂ I0 = C∞(S∗M ; End(E))G

consisting of closed nuclear, Fréchet m-algebra ideals with the following property:
For each j = 0, 1, . . . , N − 1, there exists a compact manifold with corners Yj, a
smooth bundle Ej → Yj of semisimple algebras and an algebra morphism

φj : Ij/Ij+1 → C∞0 (Yj , ∂Yj ; Ej) := {f : Yj → Ej | f smooth and f |∂Yj
= 0}

that is a homeomorphism onto its image φj(Ij/Ij+1) and ∩n∈NC∞0 (Yj , ∂Yj ; Ej)n ⊂
φj(Ij/Ij+1).

For k ∈ Z/2Z, we let Hk
per(X,Y ) := ⊕i∈kHi(X,Y ) ⊗ C, that is, the direct sum

of all singular cohomology groups of the pair (X,Y ) of the same parity as k and
with complex coefficients. In particular, as in [26], we have

Corollary 1.4. Using the notation of Theorem 1.3, the algebra morphisms φj
induce isomorphisms in periodic cyclic homology. Moreover, there is a manifold
with corners Yk that is a finite covering Yk → Yk such that the center of C∞(Yk; Ek)
is isomorphic to C∞(Yk) and hence

HPtop
k (Ij/Ij+1) ' Hk

per(Yj , ∂Yj) , k ∈ Z/2Z ,

and we have a spectral sequence with E1
−p,q := Hq−p

per (Yp, ∂Yp) convergent to HPtop
q−p(C∞(M,End(E))G.
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Our algebras are built out of Azumaya algebras, so we include several results
proving that they, as well as other algebras related to Azumaya algebras, are Connes
algebras. In particular, the commutative algebras modelled by smooth functions
are Connes algebras (this is just the initial step in the proof of Theorem 1.1, which
is more general).

1.3. Contents of the paper. We start is Section 2 with some preliminaries on
periodic cyclic homology and topological K-theory. In Section 3, we briefly review
excision from an abstract view point and introduce the concepts of Connes alge-
bras, C-smooth stratifications, and C-smooth algebras. We conclude this section
by showing that any C-smooth algebra is a Connes algebra. In Section 4, we show
that topologically nilpotent algebras are Connes algebras and show that the space
of smooth sections C∞0 (X,Y F) of a finite rank bundle F → X of semisimple al-
gebras over a manifold with corners X vanishing on a union of closed faces Y is
a Connes algebra. This are the first steps for the proof of the main example of
Connes algebra discussed in this paper, that is the set of G-invariant smooth sec-
tions C∞(X,Y,F)G of such a bundle F with GY = Y . This example is treated in
Section 5 by exhibiting a C-smooth stratification using blow-up constructions. In
Section 6, we then deduce from the previous sections that when the group G is finite
then the crossed product C∞0 (X,Y ;F) o G is a Connes algebra, that the algebras
of pseudodifferential operators Ψ0(M,E)G, Ψ−∞(M,E)G and Ψ−1(M,E)G, over a
closed G-manifold M , with coefficients in a vector bundle E, are Connes algebras.
We also show that the algebras of smooth families of pseudodifferential operators
Ψ0(M |B,E), Ψ−∞(M |B,E) and Ψ−1(M |B,E) are Connes algebras. Appendix A
is devoted to the proof of a technical result needed in the proof that C∞(X,Y,F)G

is a Connes algebra.

1.4. Acknowledgements. We thank Bernd Ammann, Alain Connes, Joachim
Cuntz, Matthias Lesch, and Markus Pflaum for useful discussions. We also thank
an anonymous referee for carefully reading our paper.

2. Background material and preliminary results

For us, a locally convex topological algebra is a complex algebra A endowed with
a compatible locally convex topology such that the multiplication A × A → A is
continuous. (The multiplication is thus assumed to be continous jointly in both
variables.) In other words, for any continuous semi-norm p on A there exists a
continuous semi-norm p′ such that p(ab) ≤ p′(a)p′(b), ∀a, b ∈ A, see [11, Chap 3,
Appendix B]. All topological algebras considered in this paper will be assumed to
be locally convex.

2.1. Review of periodic cyclic homology. We briefly recall the topological
periodic cyclic homology for topological algebras that will be used in this paper,
see for instance [10, 11, 23, 37] for the standard material used in this section.
The topological cyclic homology considered in this paper is such that it is the
same for an algebra and for its completion. If A is a topological algebra, we let
A+ := A × C denote its unitalization with the product topology and the product
(x, λ)(y, µ) = (xy + λy + µx, λµ). In particular, if A is a locally convex (complete)
topological algebra, then A+ is equipped with the semi-norms given for instance
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by pα(a, λ) := pα(a) + |λ|. An exact sequence

(5) 0→ I → A → B → 0

of locally convex, topological algebras is by definition a sequence of continuous
algebra morphisms between locally convex, topological algebras such that A → B
is surjective, B has the induced quotient topology, and I maps homeomorphically
onto its kernel. So it is an algebraically exact sequence with a compatibility of
the topologies. In the following, A will be a category of locally convex, topological
algebras.

Definition 2.1. Let A be a topological algebra. A topological cyclic complex on A
is a graded vector space C(A) :=

(
Cn(A)

)
n≥0

, where, for all n, Cn(A) is a suitable

completion of the (algebraic) tensor product A+⊗A⊗n. We require that these com-
pletions be such that the usual differentials b and B extend by continuity to maps
denoted by the same symbols: b : Cn(A) → Cn−1(A) and B : Cn(A) → Cn+1(A),
see for instance [10, 11] or [23, Chapter II]. The Hochschild, cyclic, and periodic
cyclic homologies of a topological cyclic complex (A, C(A)) are the corresponding
groups defined using the mixed complex (C(A), b, B). In particular, the periodic
(topological) cyclic homology groups HPtop

∗ (A) of A are the homology groups of the
complex

(∏
n∈2Z+

Cn(A),
∏
n∈2Z+

Cn+1(A), b+B
)

(Z/2Z-graded).

The topological cyclic complexes on (locally convex) topological algebras form a
category.

Definition 2.2. Let A be a category of locally convex algebras with continuous
algebra morphisms, as above. A category of topological cyclic complexes (based
on the objects of A) is a category C whose objects are pairs (A, C(A)) consisting
of topological algebra A in A together with a topological cyclic complex C(A) of
A. The morphisms in C are continuous, linear maps f = (fa, fc) : (A, C(A)) →
(B, C(B)) such that fa : A → B is an algebra morphism in A and fc(a0⊗ a1⊗ . . .⊗
an) = fa(a0)⊗ fa(a1)⊗ . . .⊗ fa(an).

2.2. Review of topological K-theory. In order to define a topological K-functor
satisfying the properties which are necessary for our study of Connes algebras (such
as periodicity) some further conditions need to be imposed on the chosen category
of locally convex algebras, see for instance [11, 16, 34]. In our applications, we will
use the Cuntz category of m-algebras. We have therefore devoted this brief review
to the topological K-functor for Fréchet m-algebras, as introduced and studied
by Phillips in [34]. For general m-algebras, we refer the interested reader to the
excellent survey [17].

Recall that a given complete topological algebra A as above is an m-algebra when
its topology can be defined by a family of submultiplicative semi-norms [16, 17, 31].
A Fréchet m-algebras is an m-algebra which is Fréchet, in other words, it is a
complete topological algebra whose topology is defined by a countable family of
submultiplicative semi-norms. Notice that each of these two categories is stable
under projective tensor products. A first important example of a Fréchet m-algebra
is the algebra R of infinite complex matrices with rapidly decreasing entries, see
[11, 16, 34]. An element R = (Rij)i,j∈N =

∑
i,j∈NRijEij in R (Rij ∈ C) satisfies:

pn(R) :=
∑
i,j∈N

(1 + i+ j)n|Rij | < +∞, ∀ ∈ N .
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Given any complete topological algebra A, the completed projective tensor product
algebra R⊗̂A will be denoted RA. It is an m-algebra when A is an m-algebra [17].
It is a Fréchet algebra when A is a Fréchet algebra [34]. Recall that any continuous
homomorphism ϕ : A → B of locally convex topological algebras extends to the
unitalizations as well as to a homomorphism of locally convex topological algebras
MN (A)→MN (B), N ∈ N, and RA → RB.

We also consider the topological algebra C∞([a, b])⊗̂A ' C∞([a, b];A) of smooth
A-valued functions on [a, b]. As in the Introduction, the algebra of complex smooth
functions on [0, 1] which vanish with all their derivatives at 0 and 1 will be denoted
C∞∞([0, 1], {0, 1}). We the define the smooth suspension SA of the topological alge-
bra A by SA := C∞∞([0, 1], {0, 1})⊗̂A. Again, if A is an m-algebra (respectively, a
Fréchet m-algebra) then so are all the above tensor products.

We recall next the definiton of the groups RK0 and RK1 introduced by Phillips
[34], but we formulate it in the more general setting of locally convex topological
algebras.

Definition 2.3. Let A be a locally convex topological algebra.

(1) Two idempotents e0, e1 ∈ A will be called smoothly homotopic if there
exists an idempotent e ∈ C∞([0, 1],A) such that e(0) = e0 and e(1) = e1.

(2) Denote by P̄ (A) the set of idempotents e ∈ M2((RA)+) such that e −(
1 0
0 0

)
∈ M2(RA). Then the set of smooth homotopy classes in P̄ (A)

is denoted RK0(A).
(3) Denote by Ū(A) the set of invertible elements u ∈ (RA)+ such that u−1 ∈
RA. Then the set of smooth homotopy classes in Ū(A) is denoted RK1(A).

If A is a Fréchet m-algebra, Phillips has shown that RK0(A) and RK1(A) are
abelian groups that depend functorially on A [34, 35]. This result obviously remains
true in the category of locally convex topological algebras, however, the category
of Fréchet m-algebras has several additional nice properties. In the following, the
term “excision” is used in the usual sense, which is recalled in Definition 2.4. In the
following A will be a category of locally convex algebras with continuous algebra
morphisms for which we shall assume that there is given a distinguished class of
exact sequences of A called admissible exact sequences.

Definition 2.4. Let A be a category whose objects are locally convex algebras and
whose morphisms are (suitable) continuous algebra morphisms. We shall say that
A satisfies the excision property for RK if, for any admissible short exact sequence
0→ I → A → B → 0 in A, there exist natural boundary maps RK0(B)→ RK1(I)
and RK1(B) → RK0(I) that, together with the functorial morphisms, yield a six-
term exact sequence:

RK0(I) // RK0(A) // RK0(B)

��
RK1(B)

OO

RK1(A)oo RK1(I) .oo

Theorem 2.5 (Phillips). The representable K-theory functors RK0 and RK1 sat-
isfy stability, Bott periodicity, and excision (or six term short exact sequence) on
the category of Fréchet m-algebras (in which all exact sequences are admissible).
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Remark 2.6. In addition to the RKi functors, we shall also use the algebraic

K-theory functors Kalg
i (A), i = {0, 1} defined as the Grothendieck group of the

semi-group of finitely generated, projective modules over the unital algebra A, for
i = 0, respectively as the limit of the abelianizations of GLn(A), as n → ∞, for
i = 1. If A is a topological algebra with unit, we shall also use the topological
K-theory functors Ktop

i (A), which are the quotient of their algebraic counterparts
with respect to homotopy. For a non-unital algebra A, Kn(A) is the kernel of
Kn(A+) → Kn(C), where K denotes any of the K-functors considered. We have

natural surjections Kalg
i (A)→ Ktop

i (A). If A happens to be a Banach algebra, then

Kalg
0 (A) ' Ktop

0 (A), but, in general, Kalg
1 (A) → Ktop

1 (A) is not injective. We also

have natural maps Ktop
i (A)→ RKi(A) if A is a locally convex topological algebra,

which are isomorphisms if A is a Banach algebra or if it is a subalgebra of a Banach
algebra that is stable under holomorphic functional calculus, see [11, Chapter 3,
Appendix C, Proposition 3].

Remark 2.7. Recall the Chern-Connes-Karoubi character Ch : Kalg
i (A)→ HPalg

i (A),
defined for any complex algebra [10, 11, 23]. This definition extends right away
to the RK-functors. Indeed, let C be a category of topological cyclic complexes
and (A, C(A)) be an object of C. Then the natural map of complexes Calg(A) :=

(A⊗(n+1))n∈Z+ → C(A) will induce a natural group morphism HPalg
∗ (A)→ HPtop

∗ (A)

such that Ch descends to a map Ch : (Kalg
i (A)/ ∼)→ HPtop

i (A), i = 0, 1 where ∼
denotes the smooth homotopy of projections or of invertible elements. As a con-
sequence, we obtain a Chern-Connes-Karoubi character Ch : RKi(A)→ HPtop

i (A)
extending the classical Chern-Connes-Karoubi character on algebraic K-theory:

RKi(A)→
(
Kalg
i (R⊗̂A)/ ∼

) Ch−→ HPtop
i (R⊗̂A)

Tr∗−→ HPtop
i (A) .

3. Connes’ principle and main results

We introduce a class of algebras for which the Chern-Connes-Karoubi character
is an isomorphism (after tensoring with C). Several examples of such algebras will
be provided in Sections 4, 5, and 6 in relation with algebras of symbols of certain
pseudodifferential operators.

3.1. Categories with the excision property for HP and for RK. We shall
treat excision from an abstract view point. In the following, we will have to specify
each time which are the “admissible” exact sequences that we consider.

Definition 3.1. Let A be a category of locally convex topological algebras in
which a class of exact sequences, called admissible is given. Let C be a category
of topological cyclic complexes. We shall say that 0 → I → A → B → 0 is an
admissible exact sequence in C if it is an admissible exact sequence of topological
algebras in A, C(B) is the quotient of C(A) under the induced morphism and C(I)→
ker
(
C(A)→ C(B)

)
is a homeomorphism onto its image.

In particular, the cyclic complexes of B and I are determined by that of A.

Definition 3.2. We shall say that a category C of topological cyclic complexes
satisfies the excision property for periodic cyclic homology (or for HP) if for any
object (A, C(A)) of C and for any admissible short exact sequence 0 → I → A →
B → 0 in C (see Definition 3.1) the natural inclusion C(I) → ker

(
C(A) → C(B)

)
induces an isomorphism of the corresponding periodic cyclic homology groups.
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It is known that the category of Fréchet m-algebras satisfies excision, but, for
general m-algebras, the result is known only for split exact sequences [17, 18, 19, 30].

Remark 3.3. A consequence of the excision property of Definition 3.2 is that
there exist boundary maps HPtop

0 (B)→ HPtop
1 (I) and HPtop

1 (B)→ HPtop
0 (I) that,

together with the functorial morphisms, yield a six-term exact sequence in periodic
cyclic homology:

HPtop
0 (I) // HPtop

0 (A) // HPtop
0 (B)

��
HPtop

1 (B)

OO

HPtop
1 (A)oo HPtop

1 (I) .oo

Thus Phillips’ Theorem 2.5 in particular states that the category of Fréchet m-
algebras satisfies the excision property for RK. See also [17]. In the same way, the
results of Cuntz state that if C is the larger category of m-algebras with K∗ :=
kk∗(C, •) (where kk is the Cuntz bivariant K-theory functor) then this category
also satisfies the K-excision property. We shall need the following extension of a
result in [33].

Proposition 3.4. Let C be a category of topological cyclic complexes that satisfies
excision for HP and for RK and let 0→ I → A → B → 0 be a short exact sequence
in C. Assume that for two of the algebras I, A, and B, the Chern-Connes-Karoubi
character Ch : RKi⊗C → HPtop

i is an isomorphism, then Ch is an isomorphism
also for the third algebra.

Proof. The results in [33] and Cuntz [16] imply that Ch is a natural transformation
from the six-term exact sequence of Definition 2.4 to the six-term exact sequence
of Remark 3.3. The result then follows from the Five Lemma [4]. �

See also [22, 36].

3.2. Connes algebras. Recall that a Banach algebra-norm ‖ · ‖0 on a topological
algebra A is a continuous norm on A such that ‖ab‖0 ≤ ‖a‖0‖b‖0.

Definition 3.5. Let (A, C(A)) be a topological cyclic complex on A, where A is
an algebra endowed with a continuous Banach norm ‖·‖0. Let A be the completion
of A in the norm ‖ · ‖0. Then (A, C(A), ‖ · ‖0) is called a Connes algebra if, for all
j ∈ Z/2Z, the following two maps

(i) RKj(A)→ RKj(A) and

(ii) Ch : RKj(A)⊗ C→ HPtop
j (A)

are isomorphisms.

The isomorphism (i) and the Chern-Connes-Karoubi character

(6) Ch : RKn(A) −→ HPtop
n (A)

then yield Connes’ character

(7) C̃h : Kn(A) −→ HPtop
n (A) .

We are ready now to prove Theorem 1.2.
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Proof of Theorem 1.2. Item (i) of the definition of Connes algebra (Definition 3.5)
is a direct consequence of the six terms exact sequences and a standard diagram
chase. Item (ii) of that definition was proved in Proposition 3.4. �

We are interested in Connes algebras because of “Connes’ principle”, which can
be stated as follows:

Theorem 3.6 (Connes’ principle). If A is a Connes algebra with A its completion

with respect to the given norm ‖ · ‖0, then Connes’ character C̃h : Ki(A) ⊗ C →
HPtop

i (A) is an isomorphism, for all i ∈ Z/2Z.

Connes’ principle follows immediately from the definition of Connes algebras
and the preceding discussion. Moreover, it permeates his earlier works on cyclic
homology and it is what sets them appart from other related works on cyclic ho-
mology. It is, of course, due to Connes. It is a useful principle since the K-groups
of C∗-algebras are notoriously difficult to compute.

Remark 3.7. Let us gather some basic observations about the class of Connes
algebras.

(1) The class of Connes algebra is stable with respect to direct sums.
(2) The algebra C∞(M) of smooth functions over a closed manifold M is a

Connes algebra with respect to the sup-norm. This follows directly from
Connes’ result [10]. Such algebras are basically the building blocks of the
class of Connes algebras.

(3) Moreover, for any (Fréchet) Connes m-algebra A, the (Fréchet) m-algebra
C∞(M,A) is a Connes algebra for the sup-norm associated with the given
Banach norm on A. See [34] for item (i) of the definition of Connes algebras.
Item (ii) follows from Künneth formulas in cyclic homology, see [24, 28].

(4) In the same way, the (Fréchet) m-algebra RA is a Connes algebra when
A is a Connes algebra. One can use many Banach completions of RA, see
[17]. See also [34] for the case of Fréchet m-algebras.

In view of definition 3.5, we now introduce the Banach version C0 of a category
of cyclic complexes C as the category of triples (A, C(A), ‖ · ‖0) where (A, C(A))
is an objet in C (a locally convex topological algebra A together with a choice of
completion of its cyclic mixed complex C(A)) and a continuous Banach algebra
norm on A. The morphisms in C0 are the morphisms in C that are continuous with
respect to the given Banach algebra norms. The main result of this paper states
that the category of Connes algebras behaves well with respect to exact sequences.
For simplicity, we shall assume from now on that all exact sequences in A are
admissible. This is the case for Fréchet m-algebras, which is the case that is used
in our main result.

Definition 3.8. Let C be a category of topological cyclic complexes that satisfies
excision for both HP and RK and let (A, C(A), ‖ · ‖0) be an object in its Banach
version C0.

(1) A C-smooth stratification of A is a sequence of two-sided ideals of A in C,

0 = IN ⊂ IN−1 ⊂ . . . ⊂ I1 ⊂ I0 = A ,

such that Ik/Ik+1 are Connes algebras for the Banach norms induced from
A.
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(2) The topological algebra A is a C-smooth algebra if it admits such a C-
smooth stratification.

We shall also write Ij := Ij . We are ready now to state the main result of this
section.

Theorem 3.9. Every C-smooth algebra A in a category that satisfies excision in
K-theory and in periodic cyclic homology is a Connes algebra. In particular, the

Connes character C̃h : Ktop
i

(
A
)
⊗ C −→ HPtop

i (A) is an isomorphism.

Proof. We shall proceed by induction on N . If N = 0 or 1, there is nothing to
prove. Assume then that N ≥ 2 and that the result is known for I1 and let us
prove it for A = I0. The completion of the exact sequence

(8) 0→ I1 → I0 → I0/I1 → 0

with respect to the given Banach space norms is exact since we have assumed that
the norms are induced from A. Moreover, this is an exact sequence in C since we
have assumed that I1 is an ideal of I0 in C and that C satisfies the excision property
for HP. We know that I0/I1 is a Connes algebra by the hypothesis. We also know
that I1 is a Connes algebra by the induction hypothesis. Theorem 1.2 then gives
that I0 is also a Connes algebra. �

4. Some examples of Connes algebras

We already mentioned many standard examples of Connes algebras and we now
list some others that will be used in the next section in the study of the algebra
of G-equivariant symbols on manifolds. The standard Goodwillie argument plays
an important part in the applications and computations, see [21]. Recall that this
argument is based on the vanishing of the periodic cyclic homology for the class of
(topologically) nilpotent algebras. These algebras appear naturally when dealing
with appropriate quotients of ideals, and form, in some sense, a class of “negligible”
Connes algebras, since their K-theory groups as well as their periodic cyclic spaces
are trivial. Let us restrict ourselves again to the category of Fréchet m-algebras
(and hence, all exact sequences will be admissible). Also, from now on in this paper,
the category C will be the category of Fréchet m-algebras with the cyclic complex
defined using the projective tensor product. The category C0 is the subcategory
of C of algebras equipped with a fixed Banach algebra norm. The morphisms are
the morphisms in C that are continuous with respect to the fixed norm. The exact
sequences are supposed to yield exact sequences of Banach algebras (for the induced
norms).

Definition 4.1. [Meyer] A complete locally convex topological algebra N will be
called a topologically nilpotent algebra, if, for any semi-norm p on N , there exists
k ≥ 1, such that p(N k) = 0 (that is, p(f1 . . . fk) = 0 for any f1, . . . , fk ∈ N ).

Notice that such a topologically nilpotent algebra cannot be unital.

Proposition 4.2. Let N be a topologically nilpotent Fréchet m-algebra with a Ba-
nach norm ‖ · ‖0. Then N is spectrally invariant in its Banach completion N
with respect to ‖ · ‖0. Moreover, all groups HPi(N ), Kalg

0 (N ), Ktop
i (N ), RKi(N ),

Kalg
0 (N ), Ktop

i (N ), and RKi(N ), i ∈ Z/2Z, vanish and hence N is a Connes
algebra.
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Proof. It is well known that the topological periodic cyclic homology of any topo-
logically nilpotent algebraN is trivial. For the topological periodic cyclic homology,
we refer for instance to [21, 29, 30]. As for the vanishing of K-theory groups, this
is easy to check. First, for any x ∈ MN (N ), the power series

∑∞
k=0 x

k converges,

and hence 1 − x is invertible. This shows that Ktop
1 (N ) = 0. Let p0 ∈ MN (C)

and let e ∈ MN ((N )+) be any idempotents which satisfies that e − p0 ∈ MN (N ).
Then u := ep0 + (1 − e)(1 − p0) satisfies eu = up0 and is an invertible element

in MN (N+). Hence e and p0 are equivalent. This proves that Kalg
0 (N ) = 0, and

hence that Ktop
0 (N ) = 0, again since the later is the quotient of the former, see

Remark 2.6.
Finally, let N be some Banach completion of N . Next, both RN and N are also

topologically nilpotent. The same arguments gives then RK0(N ) = RK1(N ) = 0.

They also show that Kalg
0 (N ) = 0 = Ktop

0 (N ) and Ktop
1 (N ) = 0. �

Let us deduce some consequences for the algebras of smooth functions on com-
pact manifolds with corners. Let X be a compact manifold with corners. Recall
that, for a closed subspace Y ⊂ X, C∞0 (X,Y ) is the ideal in C∞(X) consisting of
those complex valued smooth functions that vanish on Y and that C∞∞(X,Y ) is the
set of those smooth complex valued functions that vanish to infinite order on Y .
It is an ideal of C∞0 (X,Y ).

We shall need Azumaya bundles over compact manifolds with corners.

Notation 4.3. (i) S,Si → X are smooth, bundles of finite dimensional, simple
algebras.

(ii) F → X is a smooth bundle of finite dimensional, semi-simple algebras.
(iii) E → X is a smooth vector bundle on X.
(iv) C∞(X;E) is the vector space of smooth sections of E and C(X;F) is the

vector space of continuous sections of F .
(v) Let Y ⊂ X be a closed subset, then C0(X r Y ;E) is the vector space of

continuous sections of F that vanish on Y , C∞0 (X,Y ;E) is the vector space of
smooth sections of E that vanish on Y , and C∞∞(X,Y ;E) is the vector space
of smooth sections of E that vanish to infinite order on Y .

So C∞(X), C∞0 (X,Y ), and C∞∞(X,Y ) coincide respectively with C∞(X;E), C∞0 (X,Y ;E),
and C∞∞(X,Y ;E) for E = C, the one dimensional trivial bundle.

The fibers of S and Si are matrix algebras (one block), so they have natural
C∗-norms. The fibers of F are direct sums of matrix algebras, so they also have
natural C∗-norms. In particular, locally we have F ' ⊕ki=1Si, but not globally.
Similarly, we have locally that S ' End(E), but not globally. In fact, every point
x of X has an open neighborhood U such that S|U ' U ×Mn(C) for some n ∈ N.
In particular, this allows us to define natural C∗-norms on the spaces of smooth
sections, which by completion give rise to continuous sections.

The algebra C∞(X,F) is a prototype of an Azumaya algebra (over its center)
and in Proposition 4.5 will show that it is a Connes algebra. Recall that a unital
Fréchet m-algebra A is an Azumaya algebra over its center Z if A is a finitely
generated projective module over Z such that

A⊗Z Aop = EndZ(A),

where Aop is the algebra A with the opposite product and EndZ(A) is the algebra
of continuous Z-linear maps on A. We shall denote by Prim(A) the Primitive ideal
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spectrum of a C∗-algebra A, that is, the set of primitive ideals of A with the hull-
kernel topology [20]. (Recall that an ideal I ⊂ A is primitive if, by definition, it is
the kernel of a non-zero irreducible *-representation of A.)

Lemma 4.4. Let X be a compact manifold with corners and let F → X be a locally
trivial bundle of semisimple algebras as above. Let Y be a closed subspace of X. Set
A := C∞(X,F), I := C∞0 (X,Y ;F), and let A and I be their completions in the
“sup-norm.”

(1) Let X := Prim(A). Then X is a finite covering of X and hence a manifold
with corners.

(2) The center Z of A is isomorphic to C∞(X). Moreover, Z ' C∞(X,Z(F)),
where Z(F) ⊂ F → X is the center of F .

(3) The algebra A is an Azumaya algebra over Z, more precisely, A ' C∞(X;FA),
where FA is a bundle of simple algebras over X, canonically obtained from
F .

(4) The algebra A ' C(X;FA) is an Azumaya algebra over its center Z ' C(X).

Proof. We may assume X to be connected. On each trivialization U of F , we
have F|U ' U ×

⊕p
k=1Mnk

(C). This implies that the primitive ideal spectrum
X := Prim(A) of the C∗-completion A := C(X,F) of A is a covering of X. Hence
X has the structure of a manifold with corners. Next, the center Z of A coincides
with the bundle over X with fibers given by the centers of the fibers of F . It is
isomorphic to the algebra C∞(X) as can be checked locally.

For the third item, let FA → X be the fiber bundle of simple algebras given
by FA|U×{k} ' U ×Mnk

(C), with the transition functions induced by F . Then
A ' C∞(X,FA) and hence the Z-module A is projective and finitely generated.
The proof is completed by a local inspection. Recall that if we denote by Cp the
center of

⊕p
k=1Mnk

(C), then we have

(⊕pk=1Mnk
(C))⊗Cp (⊕pk=1Mnk

(C))
op ∼= EndCp (⊕pk=1Mnk

(C)) .

The last statement is thus a direct consequence of (3). �

The following proposition is well-known for X smooth without boundary (or
corners) [10, 11, 23, 22]. Its proof generalizes right away to manifolds with corners
and to sections of semi-simple bundles.

Proposition 4.5. Let X be a compact manifold with corners, F → X be a
fiber bundle of semi-simple algebras over X, and Z ' C∞(X) be the center of
A = C∞(X,F). Then the inclusion i : Z → A induces isomorphisms HPn(Z) →
HPn(A) and RKn(Z) ⊗ Q → RKn(A) ⊗ Q, n ∈ Z/2Z. Let Z and A be the norm
completions of these algebras. Then, similarly, the inclusion Z ⊂ A induces iso-
morphisms RKn(Z) ⊗ Q → RKn(A) ⊗ Q, n ∈ Z/2Z. Consequently, Z and A are
Connes algebras with

HPn(A) ' HPn(Z) ' Hn
per(X) .

Proof. First, let us prove that if F = C := X × C, then C∞(X;F) = C∞(X) is
a Connes algebra as in the case without corners. We follow the classical proof
(see [10, 11, 22, 23] for the justifications not included here). Let i ∈ Z/2Z. since

C∞(X) is stable under holomorphic calculus in C(X), we have that Ktop
i (C∞(X))→

Ktop
i (C(X)) is an isomorphism. Since C(X) is a C∗-algebra, we also have RKi(C∞(X)) '

Ktop
i (C∞(X)) ' Ktop

i (C(X)) ' RKi(C(X)) ' Ki(X). Next, because X has
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the homotopy type of a finite CW-complex and Ch is a natural transformation
of cohomology theories that is an isomorphism for spheres, we also have that
Ch : RKi(C(X)) ⊗ C ' Ki(X) ⊗ C → Hi

per(X) is an isomorphism. Finally, we

have that the classical proof of HPi(C∞(X)) ' Hi
per(X) (using the Hochschild-

Kostant-Rosenberg-Connes isomorphism) applies without change. We have thus
obtained the sequence of isomorphisms

(9) RKi(C∞(X))⊗C ' Ktop
i (C(X))⊗C ' Ki(X)⊗C ' Hi

per(X) ' HPi(C∞(X))

whose composition is the Chern-Connes-Karoubi map, which is hence an isomor-
phism. This proves that C∞(X) is a Connes algebra.

The center Z of A is Z ' C∞(X). By Proposition 4.5, by replacing X with
X and F with FA, we may assume that F consists of simple fibers (i.e. matrix
algebras) and hence that A is Azumaya over X. In particular, we may replace X
with X in what follows. Let us consider then the natural embeddings:

Z �
� i // A �

� j // EndZ(A) �
� k // MN (Z) �

� l // MN (A) ,

where the morphism k comes from an embedding F ⊂ X × CN of vector bundles
over X. It is well known that HPn(MN (Z)) ' HPn(Z) and that RKn(MN (Z)) '
RKn(Z) and that the same results hold for A. We thus obtain the compositions
k∗ ◦ j∗ ◦ i∗ : Kn(X) → Kn(X) and l∗ ◦ k∗ ◦ j∗ : Ktop

n (A) → Ktop
n (A). The first

morphism is multiplication with the class [A] ∈ K0(X), which is an invertible

element in K0(X) ⊗ Q. Similarly, Ktop
∗ (A) is a module over K∗(X) using the

isomorphism Z ⊗Z A ' A and l ◦ k ◦ j is obtained from k ◦ j ◦ i by tensoring with
idA over Z. Hence l∗ ◦ k∗ ◦ j∗ is also multiplication by [A]. It follows that both
compositions k∗ ◦ j∗ ◦ i∗ and l∗ ◦ k∗ ◦ j∗ become isomorphisms after tensoring with
Q and hence i∗ : RKn(Z)→ RKn(A) is an isomorphism. The same argument gives
that the inclusion Z → A induces an isomorphism RKn(Z)⊗Q→ RKn(A)⊗Q.

To obtain the corresponding result in periodic cyclic homology, we first notice
that we have also maps HHn(i) : HHn(Z) → HHn(A) of Hochschild homology
groups that can be localized using the Z-module structure on both groups. Once
we localize, the same argument as above (really just Morita equivalence) gives that
all localizations to maximal ideals in Z of HHn(i) are isomorphisms, and hence
HHn(i) is an isomorphism as well. (This is the argument from [26].) Hence i
induces an isomorphism in periodic cyclic homology as well. Since we have proved
that Z ' C∞(X) = C∞(X) is a Connes algebra, it follows thatA is a Connes algebra
as well (since, up to tensoring with C, it has the same RK and HP groups). �

The following result will be a basic step in the proofs of the results of the next
section.

Proposition 4.6. Let Y ⊂ X be a closed subspace and I be a closed subalgebra
of C∞0 (X,Y ;F) that contains C∞∞(X,Y ;F). Then, for all i ∈ Z/2Z, the natural
inclusions induce isomorphisms:

(1) RKi(C∞0 (X,Y ;F)) ' RKi(C0(X r Y ;F));
(2) RKi(C∞∞(X,Y ;F)) ' RKi(I);
(3) RKi(I) ' RKi(C∞0 (X,Y ;F));

(4) HPtop
i (C∞∞(X,Y ;F)) ' HPtop

i (I); and

(5) HPtop
i (I) ' HPtop

i (C∞0 (X,Y ;F)).
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Proof. The algebra C∞0 (X,Y,F) is stable under holomorphic functional calculus in
C0(XrY,F), and hence the inclusion induces an isomorphism RKi(C∞0 (X,Y,F))→
Ktop
i (C0(X rY,F)). The Fréchet m-algebra C∞0 (X,Y,F) can be endowed with the

uniform norm and is an object in the category C0 whose completion is precisely
the C∗-algebra C0(X r Y,F). The same observation holds for the smaller subal-
gebra C∞∞(X,Y,F), which is also a Fréchet m-algebra. In particular, we have an

isomorphism RKi(C∞∞(X,Y,F))→ Ktop
i (C0(X r Y,F)).

Now notice that the quotient Fréchet m-algebra I/C∞∞(X,Y,F) is topologically
nilpotent when endowed with the quotient topology. Indeed, the semi-norms on
the quotient C∞0 (X,Y,F)/C∞∞(X,Y,F), can be taken to be a sequence induced by
the standard (semi-)norms on C∞0 (X,Y,F)/C∞` (X,Y,F), where C∞` (X,Y,F) is the
algebra of smooth functions vanishing of order ≤ ` on Y . Therefore since any
such semi-norm on C∞0 (X,Y,F)/C∞` (X,Y,F) vanishes on `-products, we conclude
that C∞0 (X,Y,F)/C∞∞(X,Y,F) is topologically nilpotent as claimed. This also gives
that I/C∞∞(X,Y,F) is topologically nilpotent. Hence HPi(I/C∞∞(X,Y,F)) = 0 =
RKi(I/C∞∞(X,Y,F)). Then, excision in K-theory and in topological periodic cyclic
homology for the short exact sequence

0→ C∞∞(X,Y,F) ↪→ I −→ I/C∞∞(X,Y,F)→ 0

of Fréchetm-algebras gives that RKi(C∞∞(X,Y ;F))→ RKi(I) and HPtop
i (C∞∞(X,Y ;F))→

HPtop
i (I) are isomorphisms for all i ∈ Z/2Z. By replacing I with C∞0 (X,Y ;F), we

obtain that RKi(C∞∞(X,Y ;F)) → RKi(C∞0 (X,Y ;F)) and HPtop
i (C∞∞(X,Y ;F)) →

HPtop
i (C∞0 (X,Y ;F)) are isomorphisms. Hence the inclusion I → C∞0 (X,Y ;F) gives

that the maps RKi(I)→ RKi(C∞0 (X,Y ;F)) and HPtop
i (I)→ HPtop

i (C∞0 (X,Y ;F))
are also isomorphisms. This completes the proof. �

Theorem 4.7. Let X be a compact manifold with corners and Y ⊂ ∂X be a
union of closed faces of X. Let I be a closed subalgebra of C∞0 (X,Y ;F) containing
C∞∞(X,Y ;F). Then the algebras C∞∞(X,Y ;F), I, and C∞0 (X,Y ;F) are all Connes
algebras with respect to the uniform norm of C0(X r Y,F).

Proof. We shall assume for simplicity that F = C, the general case being the same
using that C∞(X,F) is a Connes algebra, see Proposition 4.5. Recall that the
boundary depth of a boundary face is the number of vanishing coordinates in a
corner chart Rn × [0,∞)k, see [3] for the precise definition. We shall proceed by
induction on the dimension of X. If dimX = 0 then ∂X = ∅ and the cardinal of X
is finite say k. Thus C∞(X) ∼= Ck, which is trivially a Connes algebra. Similarly,
if dimX = 1 then ∂X and hence also Y = {x1, · · · , xk} are a finite sets. Applying
Theorem 1.2 to the exact sequence

0→ C∞0 (X,Y )→ C∞(X)→ Ck → 0 ,

we get that C∞0 (X,Y ) is a Connes algebra.
Now assume that the statment is true for smaller dimensions than that of X, that

is, that the algebras C∞0 (Z,ZY ) are Connes algebras for all compact manifolds with
corners Z such that dimZ < dimX (and ZY ⊂ ∂Z a union of closed faces of Z).
Denote by N the maximal depth of X, i.e. N = max depth(F ), where F runs over
all the boundary faces. Let us introduce the ideals Ik := C∞0 (X,Y ∩∪depth(F )≤kF )
and consider the stratification

IN = C∞0 (X,Y ) ⊂ IN−1 ⊂ · · · ⊂ I1 ⊂ I0 = C∞(X).
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Then all quotients are given by

Ik/Ik+1
∼=

⊕
F⊂Y,depth(F )=k+1

C∞0 (F, Y ∩ ∂F ).

Indeed, the restriction map r : Ik →
⊕

F⊂Y,depth(F )=k+1 C∞0 (F, Y ∩ ∂F ) is clearly

well defined and has kernel exactly Ik+1. Moreover, r is surjective because, if

f ∈ C∞0 (F, Y ∩ ∂F ), then we can extend f to a smooth function f̃ on X that
vanishes on the other faces ⊂ Y of the same depth as F since the surjectivity is a
local statement (using a partition of unity) and, locally, we may assume that F is
an embedded boundary face and hence that it has a tubular neighborhood. That
is, we can assume that f̃ is equal to 0 on any boundary face contained in Y distinct
from F and of depth k + 1.

Since C∞0 (F, Y ∩∂F ) are Connes algebras by the induction hypothesis, we obtain
that Ik/Ik+1 is a Connes algebra as finite direct sum of Connes algebras. Now,
C∞(X) is a Connes algebra and all quotients Ik/Ik+1 are Connes algebras thus
the above stratification is C-smooth and applying Theorem 1.2 several times, we
deduce that Ik is a Connes algebra for all k. In particular, IN = C∞0 (X,Y ) is a
Connes algebra.

The statements about I ⊂ C∞0 (X,Y ) is a consequence of Proposition 4.2 since
C∞0 (X,Y )/I is topologically nilpotent (it is also a consequence of Proposition 4.6).
The statement about C∞∞(X,Y ) is a particular case. �

5. Group actions on Azumaya bundles

The goal of this section is to prove Theorem 5.9.

5.1. G-manifolds with corners. We shall use the notation from [25] (page 4 and
pages 49-50) for transformation groups and the notation from [3] for manifolds
with corners and blow-ups. See also [1, 27]. The reader should also consult these
references for the missing definitions or proofs. The definition of the blow-up [X : Y ]
is recalled in the Appendix, see Equation (23).

We let X be a compact manifold with corners with a smooth G-action, We may
assume that X is endowed with a smooth Riemannian metric and that the action
of G is isometric. We shall consider submanifolds of X in the strong sense that
they have tubular neighborhoods. Thus, if Y ⊂ X is a submanifold with corners
of X, then Y is closed and there is a neighborhood U of Y in X such that U
is G-diffeomorphic to the normal vector bundle NXY := TX|Y /TY → Y (the
normal vector bundle to Y in X) via a diffeomorphism of manifolds with corners
mapping the zero section of NXY to Y . This is the concept of manifolds with
corners considered in [2]. In particular, a submanifold with corners of X is also
a p-submanifold of X [3, 27], but the converse is not true. A submanifold with
corners is called an interior p-submanifold in [1].

If x ∈ X, Gx denotes the isotropy group of x, namely,

(10) Gx := {γ ∈ G | γ(x) = x} .

Given a subgroup H ⊂ G, we let (H) denote the set of subgroups of G conjugated
to H. If K ⊂ G is another subgroup, we will write (H) ≤ (K) if H is conjugated to
a subgroup of K. Since X is compact, we know that there exist only finitely many
conjugacy classes Cj = (Hj) = (Gxj

), j = 1, . . . , N , of isotropy groups Gx, x ∈ X.
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Then Cj ≤ Ck if there is a subgroup in Cj that is contained in a subgroup in Ck.
We may assume the order (numbering) to be such that,

Cj ≤ Ck =⇒ j ≥ k.
An order with these properties will be called an admissible order.

In the following, H and K will denote subgroups of G. We shall use the following
standard notations [25]

(11)

XH := {x ∈M | Gx = H} ,
X(H) := {x ∈ X | (Gx) = (H)} ,

X(≥ H) := {x ∈ X | (Gx) ≥ (H)} , and

X(≤ H) := {x ∈ X | (Gx) ≤ (H)} .

As usual, XH denotes the set of fixed points by H. It is known then that

(12) GXH = X(≥ H) and GXH = X(H) .

We also denote by N(H) := {g ∈ G | g−1Hg = H} the normalizer of H in G.
Moreover, N(H) acts on XH and we have the following diffeomorphism that will
be used later on:

(13) X(H) ' (G/H)×N(H)/H XH ,

with the induced action of N(H)/H on XH (Proposition 1.91 and Corollaries 1.92
and 1.94 of [25]). Moreover, the action of N(H)/H on XH is free. See [25] for the
following obvious lemma.

Lemma 5.1. We have X(H) ⊂ X(≥ H). Thus, if H is a maximal isotropy group,
then X(H) is closed.

As in [1], we shall say that the action of G on X is boundary intersection free
if, given a closed face F of M and g ∈ G, we have either gF = F or gF ∩ F = ∅.
Notice that if the action of G on X is boundary intersection free, then so is the
action of any subgroup H ⊂ G. The first part of the following statement is a result
from [1].

Lemma 5.2. Assume that the action of G on X is boundary intersection free. Then
XG is a (closed) submanifold with corners of X and ∂[XG] = [∂X]G = XG ∩ ∂X.
Similarly, X(G) is a manifold with corners and ∂[X(G)] = [∂X](G) = X(G)∩∂X.
If H ⊂ G is a maximal isotropy subgroup, then X(H) will be a submanifold with
corners of X. If H is not a maximal isotropy subgroup, then X(H) will still be a
manifold with corners, but not closed, in general, and hence not a submanifold with
corners of X, in general.

Proof. Let us fix a G-invariant metric on X. Let x ∈ XG. Let us suppose that x
belongs to an open face F of X and let us choose a G-invariant neighborhood U of
x in F . By using the exponential map in directions normal to F , we obtain then
that x has a G-invariant neighborhood of the form U × [0, 1)j with the action of
G being diagonal and trivial on [0, 1)j since G is compact and its action on X is
boundary intersection free. Hence (U× [0, 1)j)G = UG× [0, 1)j and UG is a smooth
manifold without boundary. This proves that XG is a manifold with corners. We
further have that

∂
[
(U×[0, 1)j)G

]
= ∂

[
UG×[0, 1)j

]
= UG×∂

[
[0, 1)j

]
=
(
U×∂

[
[0, 1)j

])G
=
(
∂(U×[0, 1)j)

)G
.



18 A. BALDARE, M. BENAMEUR, AND V. NISTOR

This proves that ∂[XG] = [∂X]G = XG ∩ ∂X, since this is a local property. By
choosing a tubular neighborhood of UG in U , we obtain a tubular neighborhood of
UG × [0, 1)j in U × [0, 1)j and hence that XG is a submanifold with corners. The
other statements are proved in a similar way by using that U(H) is an immersed
submanifold of U that is closed if H is a maximal isotropy subgroup (Lemma
5.1). �

Lemma 5.2 allows us to unambiguously write for any closed subgroup of G

∂XH = ∂[XH ] = [∂X]H = XH∩∂X and ∂X(H) = ∂[X(H)] = [∂X](H) = X(H)∩∂X.
That is “∂(·) commutes with ·H and with · (H).”

Remark 5.3. The statement of the last lemma is a local statement, so no assump-
tion of having embedded faces is required.

We formulate the following result as a lemma, for the purpose of further refer-
encing it. Except the statement about V1 (which follows from Lemma 5.2), it is
Lemma 1.81 of [25].

Lemma 5.4. Assume again that the action of G on the compact manifold with
corners X is boundary intersection free, and let {H1, H2, . . . ,HN} be a complete
set of representatives of conjugacy classes of isotropy groups with an admissible
ordering (that is, (Hi) ≥ (Hj) implies i ≤ j). For 1 ≤ k ≤ N , we set

(14) Vk := X(H1) ∪X(H2) ∪ . . . ∪X(Hk).

Then Vk is a closed subset of X, but not a submanifold, in general, except V1, which
is a submanifold with corners of X.

The subspaces X(Hj), j = 1, . . . , N define a stratification of X.

5.2. G-equivariant bundles and algebras. Recall the objects introduced in the
notation 4.3, objects that from now on will be endowed with an action of our
compact Lie group G. In particular, S,Si → X will be G-equivariant bundles of
finite dimensional simple algebras, and F → X will be a G-equivariant bundle
of finite dimensional, semi-simple algebras. Given a closed subset Y ⊂ X with
GY = Y , and a G-equivariant vector bundle E, recall also the ideals C∞0 (X,Y ;E)
and C∞∞(X,Y ;E) of 4.3, which will now carry a G-action.

Recall that if E → X is a G-equivariant vector bundle then EG → XG is a
vector bundle as image of the projection pG : E|XG → EG given by pG(x, v) =
(x,
∫
G
gv dg), for any x ∈ XG and v ∈ Ex.

Proposition 5.5. Let I be as in Proposition 4.6, that is let I be a subalge-
bra of C∞0 (X,Y ;F) containing C∞∞(X,Y ;F). We endow I with the C∗-norm of
C0(X r Y ;F) and we complete the cyclic mixed complexes of I, C∞0 (X,Y ;F) and
C∞∞(X,Y ;F) with respect to the projective tensor product. Let us assume that
GY = Y . Assume also that the action of G on X has a single isotropy type H
and that Y ⊂ ∂X is a union of closed faces of Y . Then IG is a Connes algebra.
In particular, both

C∞0 (X,Y ;F)G ' C∞0 (XH/N(H), Y H/N(H);FH/N(H)) and

C∞∞(X,Y ;F)G ' C∞∞(XH/N(H), Y H/N(H);FH/N(H))

are Connes algebras.
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Proof. Let Γ := N(H)/H. The assumptions combined with the diffeomorphism of
Equation (13) give X = X(H) ' (G/H)×Γ XH = (G/H)×Γ X

H , and hence

C∞0 (X,Y ;F)G ' C∞0 (XH , Y H ;FH)Γ and C∞∞(X,Y ;F)G ' C∞∞(XH , Y H ;FH)Γ .

Since the action of Γ := N(H)/H on XH is free, the quotient XH/Γ is also a
manifold with corners and FH descends to a bundle of algebras FH/Γ → XH/G
such that

C∞0 (XH , Y H ;FH)Γ ' C∞0 (XH/Γ, Y H/Γ;FH/Γ) and

C∞∞(XH , Y H ;FH)Γ ' C∞∞(XH/Γ, Y H/Γ;FH/Γ) .

The result then follows from Theorem 4.7 applied to (XH/Γ, Y H/Γ,FH/Γ) and
IG. �

Note that, even if F is a trivial bundle of semisimple algebras, FH/Γ need not be
trivial, and hence the extra generality afforded by our setting of sections of algebra
bundles is necessary.

5.3. Blow-ups of singular strata. Recall that Y is a closed submanifold of the
compact manifold with corners X and that [X : Y ] denotes the blow-up manifold.
The definition of the blow-up is recalled in the Appendix in Equation (23). We refer
to the Appendix for more on the blow-up. Let {H1, H2, . . . ,HN} be a complete set
of representatives of conjugacy classes of isotropy groups of G acting on X with
admissible ordering. Let

Vk := X(H1) ∪X(H2) ∪ . . . ∪X(Hk),

k = 1, . . . , N , which is a closed subset of X for each k, by Lemma 5.4. Let F be a
G-equivariant bundle of finite dimensional semisimple algebras on X.

Notation 5.6. We let I0 := C∞∞(X, ∂X;F) and Ik := C∞0 (X,Vk;F)∩ I0, for k ≥ 1.

In particular,

0 = IN ⊂ IN−1 ⊂ . . . ⊂ I1 ⊂ I0 := C∞∞(X, ∂X;F) .

We assume from now on that the action of G on X is boundary intersection free,
as in Lemma 5.2. See Equation (23) in the appendix for the definition of the blow-
up. We want some sort of “resolution” of the sets Vk. Let Hj be as above (arranged
in an admissible order) and let us define by induction Xk and Yk as follows

(15)


X1 := X ,

Yk := Xk(Hk) , if Xk was defined,

Xk+1 := [Xk : Yk] := [Xk : Xk(Hk)] , if Yk was defined.

ThenXk is a compact manifold with corners with isotropy types {Hk, Hk+1, . . . ,HN},
k ≤ N , as in [1]. This procedure works since Yk is a closed submanifold with corners
of Xk by Lemmas 5.1 and 5.2, since Hk is a maximal isotropy group of Xk (see also
[1, 25]).

We next want to identify the effect of these blow-ups on the sets Xk+1(Hj),
j ≥ k+ 1, which we know are manifolds with corners in view of Lemma 5.2 (which
the reader should review now since it will be used again below). First of all, the
disjoint union decomposition defining Xk+1 as the blow-up of Xk along its subset
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Yk := Xk(Hk) of points of isotropy of type Hk, namely Xk+1 =
[
XkrYk

]
∪SNXkYk,

gives for j ≥ k + 1

(16) Xk+1(Hj) =
[
Xk r Yk

]
(Hj) ∪

[
SNXkYk

]
(Hj) .

Since β is a diffeomorphism outside SNXkYk := SNXkXk(Hk), we further have

(17)
[
Xk+1 r SNXkYk

]
(Hj) =

[
Xk r Yk

]
(Hj) = Xk(Hj) ,

since Yk has isotropy type Hk and j ≥ k + 1. Lemma 5.2 allows us to give an
unambigous sense to ∂X(H) = [∂X](H) = ∂[X(H)] and, together with the fact
that SNXkYk is contained in the boundary of Xk+1 gives that the blow-down map
induces for j ≥ k + 1 diffeomorphisms

(18) β : Xk+1(Hj)r∂Xk+1(Hj) ' Xk(Hj)r∂Xk(Hj) ' . . . ' X1(Hj)r∂X1(Hj) .

(Thus, in case X1 = X does not have a boundary, Yk := Xk(Hk) will be a compact
manifold with corners with interior diffeomorphic to the stratum X1(Hk), that is,
a compactification of X(Hk).)

Recall that Vk := X(H1)∪X(H2)∪ . . .∪X(Hk). We obtain then (with Yk+1 :=
Xk+1(Hk+1) and X1 = X, as before) that

(19) β(Yk+1) ⊂ Vk+1 and β(∂Yk+1) ⊂ Vk ∪ ∂X .

Consequently, given a smooth section f of F on Vk+1 that vanishes on Vk ∪ ∂X,
then β∗(f) := f ◦β will be a smooth section of (the pull-back of) F on the compact
manifold Yk+1 := Xk+1(Hk+1) that vanishes on its boundary. This proves the
second inclusion of the following proposition, the proof of the first one (by induction
on N) being relegated to the next subsection.

Proposition 5.7. Assume that the action of G on X is boundary intersection
free. Let β : Xk+1 → X1 := X be the composition of all the blow-down maps
and Jk+1 := β∗(Ik)/β∗(Ik+1). Let 0 ≤ k ≤ N − 1. Then Ik/Ik+1 → Jk+1 is an
isomorphism of topological algebras and

C∞∞(Yk+1, ∂Yk+1;F) ⊂ Jk+1 ⊂ C∞0 (Yk+1, ∂Yk+1;F) .

It is also easy to prove that C∞c (Yk+1, ∂Yk+1;F) ⊂ Jk+1, but we have not been
able to use this observation to prove the first inclusion of Proposition 5.7. In any
case, this adds credibility to our statement and justifies the postponement of its
proof.

Corollary 5.8. We use the notation and hypotheses of Proposition 5.7 (in partic-
ular, the action of G on X is boundary intersection free). Then the algebras Jk+1

and JGk+1 are Connes algebras.

Proof. The fact that Jk+1 is a Connes algebra is a consequence of Theorem 4.7 and
Proposition 5.7. Since Yk+1 := Xk+1(Hk+1) has a single isotropy type, Proposition
5.5 also yields right away that C∞∞(Yk+1, ∂Yk+1;F)G is a Connes algebra. Since
JGk+1/C∞∞(Yk+1, ∂Yk+1;F)G is a topologically nilpotent algebra we obtain that JGk+1

is a Connes algebra as well. �

As a corollary, we are now in position to prove the following result.

Theorem 5.9. We use the notation and hypotheses of Proposition 5.7 (in partic-
ular, the action of G on X is boundary intersection free). Then

(1) The algebras C∞∞(X, ∂X;F)G and C∞0 (X, ∂X;F)G are Connes algebras.
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(2) Assume furthermore that X has embedded faces and that Y ⊂ ∂X is a G-
invariant union of closed faces of X, then the algebra C∞∞(X,Y ;F)G and
C∞0 (X,Y ;F)G are Connes algebras.

Proof. The fact that C∞∞(X, ∂X;F)G is a Connes algebra follows by applying The-
orem 3.9 to the stratification (or composition series) IGk which has subquotients
JGk+1 that are Connes algebras by Corollary 5.8. The fact that C∞0 (X, ∂X;F)G

is a Connes algebra follows from the fact that C∞0 (X, ∂X;F)G/C∞∞(X, ∂X;F)G is
topologically nilpotent. For the second point, notice that C∞0 (X,Y ;F)G has a com-
position series with subquotients C∞0 (F, ∂F ;F)G, where F ranges through a set of
closed faces of X. �

5.4. Proof of Proposition 5.7. The proof of Proposition 5.7 is an induction on
N , the number of isotropy types of X and is a consequence of Lemma 5.10. We
shall freely use the notation of the previous subsection and Appendix A (but we
also recall some of the most important ones from time to time). Since the result is
local, we may assume that F = C, and thus drop it from the notation.

If N = 1, J1 = I0 = C∞∞(X1, ∂X1), Y1 = X = X1 and there is nothing to prove.
Let us now turn to the induction step, by assuming the result to be true if

there are N − 1 isotropy types and prove it if there are N isotropy types. Let
{H1, H2, . . . HN} be the isotropy types of X =: X1. To simplify notation, let Y :=

Y1, X̃ := [X1 : Y1] = [X : Y1] where, we recall Y1 := X(H1). Let β : X̃ → X = X1

be the blow-down map. Similarly, let Ỹ := β−1(Y ) := β−1(Y1).
For the induction step, we only need to prove that C∞∞(Yk+1, ∂Yk+1) ⊂ Jk+1 since

the inclusion Jk+1 ⊂ C∞0 (Yk+1, ∂Yk+1) is obvious (and was already discussed). Let

us consider the composition series of 5.6 for X̃, but we shift the indices to account
for the fact that X̃ has only N − 1 isotropy types:

(20) Ĩk := C∞0 (X̃, Ỹk) ∩ C∞∞(X̃, ∂X̃) , k ≥ 2 ,

and Ĩ1 := C∞∞(X̃, ∂X̃). (Thus the definition of Ik is obtained from the definition of

Ĩk by removing all the symbols .̃)
Recall from Lemma A.1 that the pull back β∗(f) := f ◦β defines an isomorphism

β∗ : C0(X r Y )→ C0(X̃ r Ỹ ). Moreover, Lemma A.3 shows that it also defines an
isomorphism

β∗ : C∞∞(X,Y ) −→ C∞∞(X̃, Ỹ ) .

To complete the proof, we shall need the following result, which is best formulated
as a lemma.

Lemma 5.10. Let β∗−1 : C∞∞(X̃, Ỹ )→ C∞∞(X,Y ) be the map of Lemma A.3. Then

β∗−1(Ĩk) ⊂ Ik, k = 1, . . . , N .

Proof. We have that ∂X̃ = Ỹ ∪ β−1(∂X). Hence Ĩ1 := C∞∞(X̃, ∂X̃) = C∞∞(X̃, Ỹ ) ∩
C∞∞(X̃, β−1(∂X)). Equation (18) gives

(21) Ĩk := C∞0 (X̃, Ỹk) ∩ C∞∞(X̃, Ỹ ) ∩ C∞∞(X̃, β−1(∂X)) ,

for all k (that is, k = 1, . . . , N). Let then f ∈ Ĩk. By Lemma A.3, β∗−1(f) ∈
C∞∞(X,Y ). It is obvious that β∗−1(f) also vanishes to infinite order on ∂X since
Y = Y1 is an (interior) submanifold with corners (so ∂X r Y is dense in ∂X). It
follows that β∗−1(f) also vanishes on Yk since f vanishes (even of infinite order)
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on Ỹ1 and it vanishes on Ỹk r Ỹ1, which is mapped bijectively onto its image by β.
Hence β∗−1(f) ∈ C∞∞(X,Y ) ∩ C∞0 (X,Yk) =: Ik. �

We can now complete the proof. By the induction hypothesis (which gives the
first inclusion in the next displayed equation) and since the space Yk+1 is the same

for both X and X̃ (by construction), we have

(22) C∞∞(Yk+1, ∂Yk+1;F) ⊂ Ĩk/Ĩk+1

β∗−1

−−−→ Ik/Ik+1 .

6. Further applications

We now include a few direct applications of our previous results.

6.1. Crossed product with finite groups. We keep the notations of the previous
subsections. Then we obtain the following result (see also [8, 36]):

Theorem 6.1. Assume that G is a finite group. Let X be a compact, boundary
intersection free G-manifold with corners and let E → X be a G-algebra bundle
over X with simple algebra fibers and let Y ⊂ ∂X be a G-invariant union of closed
faces of X. Then the crossed product algebra C∞(X,Y ; E)oG is a Connes Fréchet
m-algebra that is spectrally invariant in its C∗-completion C0(X r Y ; E) o G. In
particular, the Chern-Connes-Karoubi character induces an isomorphism

C̃h : Ktop
n (C0(X r Y, E) oG)

'−→ HPtop
n (C∞(X,Y ; E) oG) , n = 0, 1 .

Proof. We denoteA := C∞(X,Y, E), A = C0(XrY ; E), B := AoG and B := AoG.

The algebra B can be identified with the algebra (A⊗ End(V ))
G

where V is the
finite dimensional G-representation on V = `2G (the regular representation). In

the same way, the algebra B can be identified with the C∗-algebra (A⊗ End(V ))
G

.
Indeed, an algebra isomorphism is obtained by identifying any kernel k : G×G→ A,
which is G-equivariant, with a function of a single variable in G, and it is easy to
check that this is a topological identification for the smooth functions and a C∗-
algebra isomorphism for the completions. More precisely, the isomorphism is given
by the map Φ : (A ⊗ C[G × G])G → A o G defined for k ∈ (A ⊗ C[G × G])G

by Φ(k)(g) = k(e, g), where e ∈ G denotes the identity element. Since k(h, g) =
h(k(e, h−1g)) by G-invariance, we clearly get

Φ(k·k′)(g) =
∑
h∈G

k(e, h)k′(h, g) =
∑
h∈G

k(e, h)h(k′(e, h−1g)) =
∑
h∈G

Φ(k)(h)h(Φ(k′)(h−1g))

= Φ(k) ∗ Φ(k′)(g).

The inverse map is given by Φ−1(f)(g, h) = g(f(g−1h)) which is clearly G-invariant
because

u(Φ−1(f)(u−1g, u−1h)) = g(f(g−1h)) = Φ−1(f)(g, h).

Similar computations give Φ−1(f1∗f2) = Φ−1(f1)·Φ−1(f2). Therefore, it remains to

show that the Fréchet m-algebra (A⊗ End(V ))
G

is a Connes algebra which is spec-

trally invariant in its C∗-completion (A⊗ End(V ))
G

. Now, this is a consequence
of Theorem 5.9. �
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6.2. Pseudodifferential operators. Assume now that M is a compact, smooth
manifold (so without corners). Let B∗M ⊂ T ∗M be the set of vector of length ≤ 1.
Then there is an identification S0

cl(T
∗M) ' C∞(B∗M) using a suitable compactifi-

cation of T ∗M . There exists also a “quantization map” q : S0
cl(T

∗M)→ Ψ0(M) and
an isomorphismR ' Ψ−∞(M) such that the induced map C∞(B∗M)⊕R → Ψ0(M)
is onto. We endow Ψ0(M) with the induced Fréchet topology that makes it an m-
algebra. We define similarly the topology on algebras of families of order zero
pseudodifferential operators.

6.2.1. Isotypical components. We shall denote by B(H) the C∗-algebra of bounded
operators over a Hilbert space H. Let as before E →M be a G-equivariant hermit-
ian vector bundle. Let α be an irreducible unitary representation ofG and denote by
L2(M,E)α ∼= α⊗L2(M,E⊗α∗)G the isotypical component associated with α. Let
us consider the restriction map πα : B(L2(M,E))G → B(L2(M,E)α)G, see [5, 6, 7].
Recall that we have K(L2(M,E))G =

⊕
K(L2(M,E)α)G and K(L2(M,E)α)G ∼=

K(L2(M,E ⊗ α∗)G), see [5]. We get then the following result.

Proposition 6.2. The algebra πα(Ψ−∞(M,E)G) is a Connes algebra. If G is
finite, then Ψ−∞(M,E)G is also a Connes algebra.

Proof. If α does not appear in L2(M,E) then πα(Ψ−∞(M,E)G) = 0 = K(L2(M,E)α)G

and this is clearly a Connes algebra. Assume now that α appears in L2(M,E). We
have πα(Ψ−∞(M,E)G) = Ψ−∞(M,E)G ∩ K(L2(M,E)α)G ∼= R. Thus the result
follows. �

A similar proof to Theorem 5.9 (using also the argument in the proof of Propo-
sition 6.3) gives also that πα(Ψ−∞(M,E)G) is a Connes algebra as well (this result
is one of the main motivation for this paper). The proof will be included in a
forthcoming publication, in order not increase the lenght of this paper too much.

6.2.2. Families of operators. Let p : M → B be a locally trivial fibration of rie-
mannian compact manifolds without boundary. Let π : E →M be a vector bundle.
Denote by Ψm(M |B,E) the set of smooth families P = (Pb)b∈B of pseudodiffer-
ential operators. Denote by S∗(M |B) → M the cosphere bundle of the vertical
tangent bundle T (M |B) = ker dp.

Proposition 6.3. The algebras C∞(S∗(M |B),End(E)), Ψ−∞(M |B,E), Ψ−1(M |B,E)
and Ψ0(M |B,E) are Connes algebras.

Proof. This is completely similar to the case of one operator, see Proposition 6.2.
The result for the first algebra C∞(S∗(M |B),End(E)) is clear. The result for the
third algebra Ψ−1(M |B,E) follows from the fact that Ψ−1(M |B,E)/Ψ−∞(M |B,E)
is topologically nilpotent, using Proposition 4.2, and the proof that the second
algebra is a Connes algebra given below. The result for the last algebra is then a
consequence of Theorem 3.9 using the exact sequence

0→ Ψ−1(M |B,E)→ Ψ0(M |B,E)→ C∞(S∗(M |B),End(E))→ 0.

To finish the proof notice that Ψ−∞(M |B,E) ∼= RC∞(B). Indeed, for each b, the
operator Pb is isomorphic to an element (mij(b)) ∈ R and this depends smoothly on
b as can be checked on any trivialisation U of p : M → B because Ψ−∞(M |B,E)|U ∼=
C∞(U,Ψ−∞(F,E′)), where F is the typical fiber of p : M → B and E′ the typical
fiber of p ◦ π : E → B. �
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In particular, let M be a compact, smooth manifold (so without corners) and
E → M be a vector bundle and Γ be a finite group acting on M and E. Then
the algebra Ψ0(M ;E)Γ is a Connes algebra. Indeed, Proposition 6.2 shows that
Ψ−∞(M,E)Γ is a Connes algebra therefore Ψ−1(M,E)Γ is a Connes algebra because
the quotient is topologically nilpotent and C∞(S∗M,End(E))Γ is a Connes algebra
by Theorem 5.9 applied with X = S∗M , ∂X = ∅ and G = Γ. Thus Theorem 1.2
applies to the exact sequence

0→ Ψ−1(M,E)Γ → Ψ0(M,E)Γ → C∞(S∗M,End(E))Γ → 0.

and gives that Ψ0(M,E)Γ is a Connes algebra. However, if Γ is infinite, this result
is not true anymore, one needs to consider a weaker property, thus leading to “weak
Connes algebras,” for which we only require the Chern-Connes-Karoubi character
to be injective with dense image. Indeed, take M = G a non discrete compact Lie
group, (for instance S1 = {z ∈ C, |z| = 1}). Then Ψ−∞(G)G ∼= C∞(G) and there-
fore RKj(Ψ

−∞(G)G) ∼= RKj(Ψ
−1(G)G) ∼= Kj(C

∗G), where C∗G ∼= K(L2(G))G is
the C∗-algebra of the group G. But K0(C∗G) = R(G) is the representation ring

of G and K1(C∗G) = 0. It is well known that R(G) =
⊕

Ĝ Z, where Ĝ is the
set of isomorphism classes of irreducible unitary representations of G. Moreover,
HP∗(C

∞(G)) = C∞(G)G, see [32, 29] for instance and thus the Connes’ char-
acter has only dense image. Now since C∞(S∗G)G is a Connes algebra, we get
that Ψ0(G)G can not be a Connes algebra. See also the Appendix of the second
(enhanced) version of [36], available from the author’s home page.

Appendix A. Smooth functions and blow-ups

Recall that if X is a manifold with corners and Y ⊂ X is a submanifold with
corners, then the normal bundle NXY of Y in X is diffeomorphic to an open
neighborhood U of Y in X by a diffeomorphism φ that maps the zero section of the
normal bundle NXY to Y . Let SNXY be the unit sphere bundle of NXY . (So its
fibers are spheres, as the name indicates it.) Then [27, 3] the blow-up of X along
Y (or with respect to Y ) is the disjoint union

(23) [X : Y ] := (X r Y ) ∪ SNXY .

It comes equipped with the structure of a smooth manifold with corners and a
blow-down map β : [X : Y ] → X that is the identity on X r Y and is the bundle
projection SNXY → Y on SNXY . We shall identify without further comment
X r Y with [X : Y ] r β−1(Y ) in what follows. Assume that a Lie group Γ acts
smoothly on X such that ΓY = Y . Then the action of Γ on X lifts to a smooth
action of Γ on [X : Y ] (this was proved in the case G compact in [1] and in general
in [3]).

Let us denote [X : Y ] by X̃ and set Ỹ := β−1(Y ).

Lemma A.1. The pull back β∗(f) := f ◦ β defines an isomorphism β∗ : C0(X r
Y )→ C0(X̃ r Ỹ ).

Proof. This is because the blow-down map β : X̃ → X is such that X has the
quotient topology and β(Ỹ ) = Y . �

Let us denote by Diff(X), respectively, Diff(X̃) the algebra of differential opera-

tors with smooth coefficients on X, respectively, X̃. Let rY be a smooth function
on X such that, close to Y it is the distance to Y and otherwise it is > 0 outside
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Y . Then it is known that rY lifts to a smooth function rY ◦ β on X̃ whose zero set
is exactly Ỹ . Notice that

(24)

C∞∞(X,Y ) := {u ∈ C0(X r Y ) | Pu ∈ C0(X r Y ) for all P ∈ Diff(X)} ,

C∞∞(X̃, Ỹ ) := {u ∈ C0(X̃, Ỹ ) | Pu ∈ C0(X̃ r Ỹ ) for all P̃ ∈ Diff(X̃)} ,
r−1
Y C

∞
∞(X,Y ) ⊂ C∞∞(X,Y ) , and

r−1
Y C

∞
∞(X̃, Ỹ ) ⊂ C∞∞(X̃, Ỹ ) .

Lemma A.2. We have the following equalities as operators on C∞c (X r Y ) =

C∞c (X̃ r Ỹ ):

(1) Diff(X) ⊂ ∪∞k=1r
−k
Y Diff(X̃) and, similarly,

(2) Diff(X̃) ⊂ ∪∞k=1(rY ◦ β)−kC∞(X̃) Diff(X).

Proof. This is a standard fact about blow-ups. For the first relation, since rY
is smooth on X̃, ∪k∈Nr−kY Diff(X̃) is an algebra. It is enough then to prove our
statement for a system of generators of Diff(X). This is clear if P is a multiplication

operator, since a smooth function on X lifts to a smooth function on X̃. Let v be
a vector field on X. Then it is known (see, for instance [3]) that there exists a

vector field ṽ on X̃ that restricts to v in the interior. Hence ṽ ∈ Diff(X̃) and

v = rY ◦ β−1ṽ ∈ ∪k∈Nr−kY Diff(X̃), as desired.

It is easy to see in local coordinates that the algebra Diff(X̃) is generated by

C∞(X̃), (rY ◦β)−1, and the lifts of vector fields rY v, with v a vector field on X. �

We now come to the following lemma which is used in the proof of Proposition
5.7, but which is obviously of independent interest.

Lemma A.3. The pull back β∗(f) := f ◦ β defines an isomorphism

β∗ : C∞∞(X,Y )→ C∞∞(X̃, Ỹ ) .

Proof. This follows from the previous two lemmas and Equation (24). Indeed, let

f ∈ C∞∞(X,Y ) and P̃ ∈ Diff(X̃). We want to prove that P̃ (f ◦ β) ∈ C0(X̃ r
Ỹ ). Then, by the second part of Lemma A.2 we may assume that P̃ = ar−kY P ,

with P ∈ Diff(X) and a ∈ C∞(X̃). Then r−kY Pf ∈ C∞∞(X,Y ) and hence P̃ (f ◦
β) = a(r−kY Pf) ◦ β ∈ C0(X̃ r Ỹ ), by Lemma A.1. This shows that the map

β∗ : C∞∞(X,Y ) → C∞∞(X̃, Ỹ ) is well defined. It is obviusly injective since X r Y is

dense in both X and X̃. Let us prove that it is onto. Let g ∈ C∞∞(X̃, Ỹ ). Then
g = f ◦ β with some f ∈ C0(X r Y ), again by lemma A.1. Let P ∈ Diff(X). We

similarly want to prove that Pf ∈ C0(X r Y ). We have that P = r−kY Q for some

Q ∈ Diff(X̃). Then Pf ◦β = r−kY Qg. Since r−kY Qg ∈ C0(X̃ r Ỹ ) by the assumption
on g, we have that Pf ∈ C0(X r Y ), again by Lemma A.1. �
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